276 research outputs found

    The diverse Grania fauna (Clitellata : Enchytraeidae) of the Esperance area, Western Australia, with descriptions of two new species

    Get PDF
    Seven species of the marine enchytraeid genus Grania Southern, 1913 are described from sediments sampled during the 2003 International Workshop on the Marine Flora and Fauna of Esperance Bay and the Recherche Archipelago, on the southern coast of Western Australia. Two species are new to science, the euryhaline Tasmanian G. dolichura Rota and Erseus, 2000 represents a new record for the state, and the remaining four species were known from other parts of Western Australia. Grania quaerens sp. n. is recognized by having a high chaetal index (= 5 short chaetal foot), small coelomocytes, penial apparati with long whip-like terminal stylets, conspicuous spermathecae with ectally bulbous ducts, and ectally granulated ampullae housing sperm rings in their ental region. Grania sperantia sp. n. is readily distinguishable by the complete lack of lateral chaetae, a multiple-banded pattern of the clitellum, extremely long sperm funnels, and the intrasegmental location of the spermathecal pores. The latter new species and four others in the collection (G. bykane Coates, 1990, G. crassiducta Coates, 1990, G. dolichura, and G. ersei Coates, 1990) are remarkable in possessing the head organ, a sensory structure unique to Grania that was not noted previously in Western Australian species. When considering the whole genus, the geographic pattern of the head organ appears southern-centred: of the 17 species of Grania reported to possess it, as many as 13 inhabit the southern latitudes. The seventh species of the Esperance collection, G. vacivasa Coates and Stacey, 1993, is notable for the kind of items found in its gut and the unusual appearance of its pygidium.Seven species of the marine enchytraeid genus Grania Southern, 1913 are described from sediments sampled during the 2003 International Workshop on the Marine Flora and Fauna of Esperance Bay and the Recherche Archipelago, on the southern coast of Western Australia. Two species are new to science, the euryhaline Tasmanian G. dolichura Rota and Erseus, 2000 represents a new record for the state, and the remaining four species were known from other parts of Western Australia. Grania quaerens sp. n. is recognized by having a high chaetal index (= 5 short chaetal foot), small coelomocytes, penial apparati with long whip-like terminal stylets, conspicuous spermathecae with ectally bulbous ducts, and ectally granulated ampullae housing sperm rings in their ental region. Grania sperantia sp. n. is readily distinguishable by the complete lack of lateral chaetae, a multiple-banded pattern of the clitellum, extremely long sperm funnels, and the intrasegmental location of the spermathecal pores. The latter new species and four others in the collection (G. bykane Coates, 1990, G. crassiducta Coates, 1990, G. dolichura, and G. ersei Coates, 1990) are remarkable in possessing the head organ, a sensory structure unique to Grania that was not noted previously in Western Australian species. When considering the whole genus, the geographic pattern of the head organ appears southern-centred: of the 17 species of Grania reported to possess it, as many as 13 inhabit the southern latitudes. The seventh species of the Esperance collection, G. vacivasa Coates and Stacey, 1993, is notable for the kind of items found in its gut and the unusual appearance of its pygidium

    A simple and rapid approach for screening of SARS-coronavirus genotypes: an evaluation study

    Get PDF
    BACKGROUND: The Severe Acute Respiratory Syndrome (SARS) was a newly emerged infectious disease which caused a global epidemic in 2002–2003. Sequence analysis of SARS-coronavirus isolates revealed that specific genotypes predominated at different periods of the epidemic. This information can be used as a footprint for tracing the epidemiology of infections and monitor viral evolution. However, direct sequencing analysis of a large number of clinical samples is cumbersome and time consuming. We present here a simple and rapid assay for the screening of SARS-coronavirus genotypes based on the use of fluorogenic oligonucleotide probes for allelic discrimination. METHODS: Thirty SARS patients were recruited. Allelic discrimination assays were developed based on the use of fluorogenic oligonucleotide probes (TaqMan). Genotyping of the SARS-coronavirus isolates obtained from these patients were carried out by the allelic discrimination assays and confirmed by direct sequencing. RESULTS: Genotyping based on the allelic discrimination assays were fully concordant with direct sequencing. All of the 30 SARS-coronavirus genotypes studied were characteristic of genotypes previously documented to be associated with the latter part of the epidemic. Seven of the isolates contained a previously reported major deletion but in patients not epidemiologically related to the previously studied cohort. CONCLUSION: We have developed a simple and accurate method for the characterization and screening of SARS-coronavirus genotypes. It is a promising tool for the study of epidemiological relationships between documented cases during an outbreak

    Phylogenomics illuminates the backbone of the Myriapoda Tree of Life and reconciles morphological and molecular phylogenies

    Get PDF
    © The Author(s) 2017 This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The attached file is the published version of the article

    Interpreting changes in measles genotype: the contribution of chance, migration and vaccine coverage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In some populations, complete shifts in the genotype of the strain of measles circulating in the population have been observed, with given genotypes being replaced by new genotypes. Studies have postulated that such shifts may be attributable to differences between the fitness of the new and the old genotypes.</p> <p>Methods</p> <p>We developed a stochastic model of the transmission dynamics of measles, simulating the effects of different levels of migration, vaccination coverage and importation of new genotypes on patterns in the persistence and replacement of indigenous genotypes.</p> <p>Results</p> <p>The analyses illustrate that complete replacement in the genotype of the strain circulating in populations may occur because of chance. This occurred in >50% of model simulations, for levels of vaccination coverage and numbers of imported cases per year which are compatible with those observed in several Western European populations (>80% and >3 per million per year respectively) and for the given assumptions in the model.</p> <p>Conclusion</p> <p>The interpretation of genotypic data, which are increasingly being collected in surveillance programmes, needs to take account of the underlying vaccination coverage and the level of the importation rate of measles cases into the population.</p

    Challenge of conducting a placebo-controlled randomized efficacy study for influenza vaccine in a season with low attack rate and a mismatched vaccine B strain: a concrete example

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our aim was to determine the efficacy of a trivalent inactivated split virus influenza vaccine (TIV) against culture-confirmed influenza A and/or B in adults 18 to 64 years of age during the 2005/2006 season in the Czech Republic.</p> <p>Methods</p> <p>6203 subjects were randomized to receive TIV (N = 4137) or placebo (N = 2066). The sample size was based on an assumed attack rate of 4% which provided 90% power to reject the hypothesis that vaccine efficacy (VE) was ≥ 45%. Cases of influenza like illness (defined as fever (oral temperature ≥37.8°C) plus cough and/or sore throat) were identified both by active (biweekly phone contact) and passive (self reporting) surveillance and nasal and throat swabs were collected from subjects for viral culture.</p> <p>Results</p> <p>TIV was well tolerated and induced a good immune response. The 2005/2006 influenza season was exceptionally mild in the study area, as it was throughout Europe, and only 46 culture-confirmed cases were found in the study cohort (10 influenza A and 36 influenza B). Furthermore among the B isolates, 35 were identified as B/Hong Kong 330/2001-like (B/Victoria/2/87 lineage) which is antigenically unrelated to the vaccine B strain (B/Yamagata/16/88 lineage). The attack rate in the vaccine group (0.7%) was not statistically significantly different from the attack rate in the placebo group (0.9%).</p> <p>Conclusion</p> <p>Due to the atypical nature of the influenza season during this study we were unable to assess TIV efficacy. This experience illustrates the challenge of conducting a prospective influenza vaccine efficacy trial during a single season when influenza attack rates and drift in circulating strains or B virus lineage match can be difficult to estimate in advance.</p> <p>Trial Registration</p> <p>Clinical trial registery: NCT00197223.</p

    Measles transmission following the tsunami in a population with a high one-dose vaccination coverage, Tamil Nadu, India 2004–2005

    Get PDF
    BACKGROUND: On 26 December 2004, a tsunami struck the coast of the state of Tamil Nadu, India, where one-dose measles coverage exceeded 95%. On 29 December, supplemental measles immunization activities targeted children 6 to 60 months of age in affected villages. On 30 December, Cuddalore, a tsunami-affected district in Tamil Nadu reported a cluster of measles cases. We investigated this cluster to estimate the magnitude of the problem and to propose recommendations for control. METHODS: We received notification of WHO-defined measles cases through stimulated passive surveillance. We collected information regarding date of onset, age, sex, vaccination status and residence. We collected samples for IgM antibodies and genotype studies. We modeled the accumulation of susceptible individuals over the time on the basis of vaccination coverage, vaccine efficacy and birth rate. RESULTS: We identified 101 measles cases and detected IgM antibodies against measles virus in eight of 11 sera. Cases were reported from tsunami-affected (n = 71) and unaffected villages (n = 30) with attack rates of 1.3 and 1.7 per 1000, respectively. 42% of cases in tsunami-affected villages had an onset date within 14 days of the tsunami. The median ages of case-patients in tsunami-affected and un-affected areas were 54 months and 60 months respectively (p = 0.471). 36% of cases from tsunami-affected areas were above 60 months of age. Phylogenetic analyses indicated that the sequences of virus belonged to genotype D8 that circulated in Tamil Nadu. CONCLUSION: Measles virus circulated in Cuddalore district following the tsunami, although there was no association between the two events. Transmission despite high one-dose vaccination coverage pointed to the limitations of this vaccination strategy. A second opportunity for measles immunization may help reducing measles mortality and morbidity in such areas. Children from 6 month to 14 years of age must be targeted for supplemental immunization during complex emergencies

    A Mumps Outbreak in Vojvodina, Serbia, in 2012 Underlines the Need for Additional Vaccination Opportunities for Young Adults

    Get PDF
    In 2012, mumps was introduced from Bosnia and Herzegovina to Vojvodina, causing an outbreak with 335 reported cases. The present manuscript analyses the epidemiological and laboratory characteristics of this outbreak, identifies its main causes and suggests potential future preventive measures. Sera of 133 patients were tested for mumps-specific antibodies by ELISA and 15 nose/throat swabs were investigated for mumps virus RNA by RT-PCR. IgG antibodies were found in 127 patients (95.5%). Mumps infection was laboratory-confirmed in 53 patients, including 44 IgM and 9 PCR positive cases. All other 282 cases were classified as epidemiologically-confirmed. More than half of the patients (n = 181, 54%) were 20-29 years old, followed by the 15-19 age bracket (n = 95, 28.4%). Twice as many males as females were affected (67% versus 33%). Disease complications were reported in 13 cases (3.9%), including 9 patients with orchitis and 4 with pancreatitis. According to medical records or anamnestic data, 190 patients (56.7%) were immunized with two doses and 35 (10.4%) with one dose of mumps-containing vaccine. The Serbian sequences corresponded to a minor genotype G variant detected during the 2011/2012 mumps outbreak in Bosnia and Herzegovina. Vaccine failures, the initial one-dose immunization policy and a vaccine shortage between 1999 and 2002 contributed to the outbreak. Additional vaccination opportunities should be offered to young adults during transition periods in their life trajectories

    Genetic Drift of HIV Populations in Culture

    Get PDF
    Populations of Human Immunodeficiency Virus type 1 (HIV-1) undergo a surprisingly large amount of genetic drift in infected patients despite very large population sizes, which are predicted to be mostly deterministic. Several models have been proposed to explain this phenomenon, but all of them implicitly assume that the process of virus replication itself does not contribute to genetic drift. We developed an assay to measure the amount of genetic drift for HIV populations replicating in cell culture. The assay relies on creation of HIV populations of known size and measurements of variation in frequency of a neutral allele. Using this assay, we show that HIV undergoes approximately ten times more genetic drift than would be expected from its population size, which we defined as the number of infected cells in the culture. We showed that a large portion of the increase in genetic drift is due to non-synchronous infection of target cells. When infections are synchronized, genetic drift for the virus is only 3-fold higher than expected from its population size. Thus, the stochastic nature of biological processes involved in viral replication contributes to increased genetic drift in HIV populations. We propose that appreciation of these effects will allow better understanding of the evolutionary forces acting on HIV in infected patients
    corecore